
546 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 3, JUNE 2010

Computing the Lattice of All Fixpoints of a Fuzzy
Closure Operator

Radim Belohlavek, Senior Member, IEEE, Bernard De Baets, Jan Outrata, and Vilem Vychodil

Abstract—We present a fast bottom-up algorithm to compute
all fixpoints of a fuzzy closure operator in a finite set over a finite
chain of truth degrees, along with the partial order on the set of all
fixpoints. Fuzzy closure operators appear in several areas of fuzzy
logic and its applications, including formal concept analysis (FCA)
that we use as a reference area of application in this paper. Several
problems in FCA, such as computing all formal concepts from data
with graded attributes or computing non-redundant bases of all at-
tribute dependencies, can be reduced to the problem of computing
fixpoints of particular fuzzy closure operators associated with the
input data. The development of a general algorithm that is appli-
cable, in particular, to these problems is the ultimate purpose of
this paper. We present the algorithm, its theoretical foundations,
and experimental evaluation.

Index Terms—Algorithm, fixpoint, fuzzy closure operator, fuzzy
logic.

I. INTRODUCTION

THIS PAPER presents an algorithm to compute all fixpoints
(or fixed points) of a fuzzy closure operator. In addition

to the fixpoints, the algorithm computes the partial order on
the set of all fixpoints. Fuzzy closure operators are particular
mappings that assign fuzzy sets to fuzzy sets (see Section II).
The concept of a fuzzy closure operator generalizes the con-
cept of an ordinary closure operator, which is a fundamental
concept in mathematics. General fuzzy closure operators were
studied in several papers (see, e.g., [5], [15], [16], [21], [37],
and [41]). Various particular fuzzy closure operators appear in
several areas of fuzzy logic and its applications, including fuzzy
relational equations (operators associated with a given fuzzy

Manuscript received February 16, 2009; revised September 15, 2009 and
January 6, 2010; accepted December 1, 2009. Date of publication January 19,
2010; date of current version May 25, 2010. This work was supported in part by
Kontakt 1-2006-33 under the project “Algebraic, logical and computational as-
pects of fuzzy relational modelling paradigms,” in part by the Bilateral Scientific
Cooperation Flanders – Czech Republic, in part by the Special Research Fund
of Ghent University under Project 011S01106, in part by the Grant Agency of
the Academy of Sciences of the Czech Republic under Grant 1ET101370417,
in part by the Czech Science Foundation under Grant 201/05/0079 and Grant
P103/10/1056, and in part by the institutional support, research plan MSM
6198959214.

R. Belohlavek and V. Vychodil were with the Department of Systems
Science and Industrial Engineering, T. J. Watson School of Engineering
and Applied Science, Binghamton University–State University of New York,
Binghamton, NY 13902 USA. They are now with the Department of Com-
puter Science, Palacky University, 771 47 Olomouc, Czech Republic (e-mail:
radim.belohlavek@upol.cz; vilem.vychodil@upol.cz).

B. D. Baets is with the Department of Applied Mathematics, Biomet-
rics, and Process Control, Ghent University, B-9000 Ghent, Belgium (e-mail:
bernard.debaets@ugent.be).

J. Outrata is with the Department of Computer Science, Palacky University,
771 47 Olomouc, Czech Republic (e-mail: jan.outrata@upol.cz).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2010.2041006

relational equation), fuzzy mathematical morphology, approxi-
mate reasoning, and fuzzy logic in narrow sense (syntactic and
semantic consequence operators), and its applications such as
fuzzy logic programming or formal concept analysis (FCA) of
data with fuzzy attributes (concept-forming operators) (see [2],
[3], [14], [18]–[20], [25], [26], [29], and [39]). In this paper, a
particular area of interest is FCA of data with graded attributes
(or fuzzy attributes) (see, e.g., [3], [8], and [40]). This area is re-
lated to fuzzy closure operators in a profound way, namely, fuzzy
closure operators and related structures, such as fuzzy Galois
connections [4], represent the mathematics behind FCA. Recall
that a principal aim in FCA is to discover a hierarchical structure
(so-called concept lattice) of particular clusters (so-called for-
mal concepts) and a concise complete set of data dependencies
(so-called attribute implications) from data. Since formal con-
cepts are just the fixpoints of a particular fuzzy closure operator
that is associated with the input data [3], the problem of comput-
ing all formal concepts reduces to the problem of computing all
fixpoints of this operator. Similarly, attribute implications that
form a so-called Guigues–Duquenne non-redundant basis of all
attribute implications that are valid in the input data correspond,
in a one-to-one manner, to easily recognizable fixpoints of a par-
ticular fuzzy closure operator. Hence, the problem of computing
the Guigues–Duquenne basis reduces to the problem of com-
puting all fixpoints of this operator (see an overview in [10]).
The aforementioned facts led us to select FCA, in particular,
the problem of computing all formal concepts from data with
graded attributes, as a reference application area from which
we obtain concrete fuzzy closure operators for an experimental
evaluation of our algorithm.

The contributions of this paper are the following. First, we
provide an algorithm to compute all fixpoints of a fuzzy clo-
sure operator in a finite set over a finite chain of truth de-
grees, along with the lattice order on the set of the fixpoints,
as well as a justification of its correctness. The algorithm is
an extension of the one from [36] for a setting with graded
attributes. Second, we provide an experimental evaluation of
the algorithm and compare its performance with a previously
published algorithm [7]. Experiments that evaluate the perfor-
mance of the algorithm from [7] have never been published
previously. It turns out that the algorithm from [7] is slightly
faster for computing the set of all fixpoints alone. However,
for computing the set of all fixpoints along with the lattice
order, the new algorithm is considerably faster. Third, we re-
call a previously published result that shows that classic algo-
rithms for computing concept lattices can be used to compute
fuzzy concept lattices by virtue of a particular transformation
of input data and compare the performance of the proposed

1063-6706/$26.00 © 2010 IEEE

BELOHLAVEK et al.: COMPUTING THE LATTICE OF ALL FIXPOINTS OF A FUZZY CLOSURE OPERATOR 547

algorithm with that of the classic algorithms. The experiments
show that the proposed algorithm is considerably faster.

This paper is organized as follows. In Section II, we present
preliminaries from fuzzy sets, fuzzy closure operators, and FCA
of data with graded attributes. In Section III, we present the
algorithm and prove its correctness. Section IV provides an
experimental evaluation. In Section V, we demonstrate how the
presented algorithm may be used in factor analysis of data with
fuzzy attributes.

II. PRELIMINARIES

This section provides basic notions from fuzzy sets, fuzzy
closure operators, and FCA of data with graded attributes. More
details can be found, e.g., in [26], [29], and [33] (fuzzy sets), [3]
and [26] (fuzzy closure operators), and [3], [24], [40], and [42]
(FCA).

A. Fuzzy Sets

We use the usual notion of a fuzzy set A in a universe set
X [43], which is defined as a mapping that assigns a truth
degree A(x) ∈ L to each x ∈ X , where L is a suitable partially
ordered set of truth degrees that contains at least 0 (falsity)
and 1 (truth). Usually, L is either the real unit interval [0, 1]
or a suitable subset of it. A(x) is interpreted as the degree to
which x belongs to A. We use a more general approach in
which L is a complete lattice that is equipped with operations.
In particular, we use complete residuated lattices that are well
known in fuzzy logic [27]–[30]. A complete residuated lattice
is a structure L = 〈L,∧,∨,⊗,→, 0, 1〉 such that the following
hold.

1) 〈L,∧,∨, 0, 1〉 is a complete lattice (with the smallest ele-
ment 0 and the greatest element 1), i.e., a partially ordered
set in which arbitrary infima (

∧
) and suprema (

∨
) exist.

2) 〈L,⊗, 1〉 is a commutative monoid, i.e., ⊗ is a binary
operation that is commutative, associative, and a ⊗ 1 = a
for each a ∈ L.

3) ⊗,→ form an adjoint pair, i.e., a ⊗ b ≤ c iff a ≤ b → c
for every a, b, c ∈ L.

The operations ⊗ (multiplication) and → (residuum) play the
role of a fuzzy conjunction and a fuzzy implication, respectively.
For examples and further details, see [28], [29], and [32]. In
the following, L denotes a complete residuated lattice, and ≤
denotes the induced lattice order. (Let a < b indicate that a ≤ b
and a 	= b.)

Given L, a fuzzy set with truth degrees from L (which is also
called an L-set) is a mapping A : X → L that assigns to any x ∈
X a truth degree A(x) ∈ L to which x belongs to A. Similarly,
a binary fuzzy relation R between X and Y with truth degrees
from L is a mapping R : X × Y → L. The set of all L-sets in a
universe X is denoted by LX . A fuzzy set A ∈ LX is called crisp
if A(x) ∈ {0, 1} for each x ∈ X . Following common usage, we
identify crisp fuzzy sets in X with (characteristic functions of)
ordinary subsets of X . In particular, let ∅ and X denote the crisp
sets ∅ ∈ LX and X ∈ LX , which are defined by ∅(x) = 0 and
X(x) = 1 for each x ∈ X . For fuzzy sets A,B ∈ LX , we put
A ⊆ B if for each x ∈ X , we have A(x) ≤ B(x), in which case,

Fig. 1. Input data table and the hierarchy of conceptual clusters.

we say that A is (fully) contained in B. If for A,B ∈ LX , we
have A ⊆ B, and if there exists x ∈ X such that A(x) < B(x),
we write A ⊂ B and say that A is strictly contained in B.

B. Fuzzy Closure Operators

A fuzzy closure operator in a universe X is a mapping C :
LX → LX that satisfies

A ⊆ C(A) (1)

A ⊆ B implies C(A) ⊆ C(B) (2)

C(A) = C(C(A)) (3)

for all fuzzy sets A,B ∈ LX . Conditions (1)–(3) are called
extensivity, monotony, and idempotency, respectively. If A =
C(A), A is called a fixpoint of C. The set of all fixpoints of C is
denoted by fix(C), i.e.,

fix(C) = {A ∈ LX |A = C(A)}.

C. Formal Concept Analysis of Data With Fuzzy Attributes

FCA provides a means to analyze data that describe objects,
attributes, and their relationship. Such data are described in a ta-
ble, such as in the left side of Fig. 1. The data can be represented
by a triplet 〈X,Y, I〉, which is called a formal context, where X
is a set of objects, Y is a set of attributes, and I : X × Y → L,
i.e., I is a fuzzy relation between X and Y . For an object x ∈ X
and an attribute y ∈ Y , the degree I(x, y) is interpreted as the
degree to which attribute y applies to object x. For example,
attribute y2 applies to object x1 to degree 0.5 in the data from
Fig. 1.

For each formal fuzzy context 〈X,Y, I〉, we define operators
↑ and ↓ [3], [8], [40] as follows. For fuzzy sets A ∈ LX (i.e., A
is a fuzzy set of objects) and B ∈ LY (i.e., B is a fuzzy set of
attributes), fuzzy sets A↑ ∈ LY (i.e., a fuzzy set of attributes)
and B↓ ∈ LX (i.e., a fuzzy set of objects) are defined by

A↑(y) =
∧

x∈X

(
A(x) → I(x, y)

)
(4)

B↓(x) =
∧

y∈Y

(
B(y) → I(x, y)

)
. (5)

Using basic rules of fuzzy logic, one can see that A↑(y) is
the truth degree of “y is shared by all objects from A” and
B↓(x) is the truth degree of “x has all attributes from B.”
Every pair 〈A,B〉 ∈ LX × LY for which A↑ = B and B↓ = A
is called a formal (fuzzy) concept of 〈X,Y, I〉. The set of all
formal concepts of 〈X,Y, I〉 is denoted by B(X,Y, I) and is

548 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 3, JUNE 2010

called a (fuzzy) concept lattice of 〈X,Y, I〉. For a formal concept
〈A,B〉 ∈ B(X,Y, I), A and B are called the extent and the
intent. For brevity, let Int(X,Y, I) denote the set of all intents
of 〈X,Y, I〉, i.e.,

Int(X,Y, I) = {B ∈ LY | 〈A,B〉 ∈ B(X,Y, I)

for some A ∈ LX }.

Analogously, Ext(X,Y, I) denotes the set of all extents of
〈X,Y, I〉.

A conceptual hierarchy inB(X,Y, I), which mimics the well-
known subconcept–superconcept relation, is modeled by a par-
tial order ≤, which is defined on B(X,Y, I) by

〈A1 , B1〉 ≤ 〈A2 B2〉 iff A1 ⊆ A2 (iff B1 ⊇ B2). (6)

The following theorem describes the structure of fuzzy concept
lattices.

Theorem 1 [8]: The set B(X,Y, I) equipped with ≤ is a
complete lattice where the infima and suprema are given by

∧
j∈J

〈Aj ,Bj 〉 =
〈 ⋂

j∈J
Aj ,

(⋃
j∈J

Bj

)↓↑〉
(7)

∨
j∈J

〈Aj ,Bj 〉 =
〈(⋃

j∈J
Aj

)↑↓
,
⋂

j∈J
Bj

〉
. (8)

Moreover, an arbitrary complete lattice V = 〈V,∧,∨〉 is iso-
morphic to some B(X,Y, I) iff there exist mappings γ : X ×
L → V and µ : Y × L → V such that γ(X,L) is

∨
-dense in

V; µ(Y,L) is
∧

-dense in V; a ⊗ b ≤ I(x, y) iff γ(x, a) ≤
µ(y, b). �

For L with L = {0, 1}, i.e., the structure of truth degrees is
the two-element Boolean algebra, the notions introduced previ-
ously become the ordinary notions of FCA of data with binary
attributes [17], [24], [42].

Example 1: We present an illustrative example of a con-
cept lattice of data with graded attributes. Let L be a three-
element Łukasiewicz algebra, i.e., L = 〈{0, 0.5, 1},min,max,
⊗,→,0, 1〉, where ⊗ and → are defined by

a ⊗ b = max(0, a + b − 1)

a → b = min(1 − a + b, 1).

Consider a formal context 〈X,Y, I〉, which is given on the left
side of Fig. 1. X = {x1 , x2 , x3} and Y = {y1 , y2 , y3 , y4 , y5}
are, respectively, the sets of objects and attributes of this formal
context. Table entries are degrees from L. We now focus on
formal concepts 〈A,B〉 in 〈X,Y, I〉, i.e., we focus on those
A ∈ LX and B ∈ LY for which A↑ = B and B↓ = A. As can be
checked, there are exactly ten formal concepts that are denoted
by Ci = 〈Ai,Bi〉 (i = 0, . . . , 9):

C0 =
〈
{x1 , x2 , x3}, {0.5/y3 ,

0.5/y4 ,
0.5/y5}

〉
,

C1 =
〈
{x1 , x2 ,

0.5/x3},{0.5/y1 ,
0.5/y2 ,

0.5/y3 , y4 ,
0.5/y5}

〉
,

C2 =
〈
{x1 ,

0.5/x2 , x3}, {0.5/y3 ,
0.5/y4 , y5}

〉
,

C3 =
〈
{x1 , x2}, {y1 ,

0.5/y2 ,
0.5/y3 , y4 ,

0.5/y5}
〉
,

C4 =
〈
{0.5/x1 , x2 ,

0.5/x3}, {0.5/y1 ,
0.5/y2 , y3 , y4 ,

0.5/y5}
〉
,

C5 =
〈
{x1 ,

0.5/x2 ,
0.5/x3}, {0.5/y1 ,

0.5/y2 ,
0.5/y3 , y4 , y5}

〉
,

C6 =
〈
{0.5/x1 , x2}, {y1 , y2 , y3 , y4 ,

0.5/y5}
〉
,

C7 =
〈
{x1 ,

0.5/x2}, {y1 ,
0.5/y2 ,

0.5/y3 , y4 , y5}
〉
,

C8 =
〈
{0.5/x1 ,

0.5/x2}, {y1 , y2 , y3 , y4 , y5}
〉
,

C9 =
〈
{0.5/x1 ,

0.5/x2 ,
0.5/x3}, {0.5/y1 ,

0.5/y2 , y3 , y4 , y5}
〉
.

If we order the formal concepts by their subconcept–
superconcept ordering (6), we obtain a concept lattice B(X,
Y, I), which is depicted by its Hasse diagram on the right side
of Fig. 1.

Remark 1: Formal concepts can alternatively be defined as
maximal rectangles that are contained in I: For a pair 〈A,B〉 ∈
LX × LY (which is called a rectangle), a fuzzy relation A ⊗
B ∈ LX×Y is defined by (A ⊗ B)(x, y) = A(x) ⊗ B(y), i.e.,
A ⊗ B is the Cartesian product of A and B. 〈A,B〉 is said
to be contained in I if A ⊗ B ⊆ I . Furthermore, let 〈A,B〉 �
〈A′, B′〉 iff A ⊆ A′ and B ⊆ B′. Then, 〈A,B〉 is a formal fuzzy
concept of 〈X,Y, I〉 iff it is a maximal rectangle (w.r.t. �)
contained in I (see [3]).

For further information on FCA of data with fuzzy attributes,
see [3], [11], [34], [38], and [40].

D. Fuzzy Closure Operators and Concept Lattices

We now describe the aforementioned connection between
fuzzy closure operators and concept lattices of data with fuzzy
attributes (see [3], [8], and [40] for details). It is well known
that for every formal context 〈X,Y, I〉, the compound mapping
↑↓ : LX → LX is a fuzzy closure operator in X , and ↓↑ : LY →
LY is a fuzzy closure operator in Y . Moreover, the fixpoints of
↑↓ are just the extents of 〈X,Y, I〉, and the fixpoints of ↓↑ are
just the intents of 〈X,Y, I〉, i.e., fix(↑↓) = Ext(X,Y, I), and
fix(↓↑) = Int(X,Y, I). Every formal concept 〈A,B〉 is uniquely
given by each of its components: by its extent A (since B = A↑)
or by its intent B (since A = B↓). Therefore

B(X,Y, I) = {〈B↓, B〉 |B ∈ Int(X,Y, I)}
= {〈B↓, B〉 |B ∈ fix(↓↑)}

which means that to compute all formal concepts of 〈X,Y, I〉,
it suffices to compute all intents of 〈X,Y, I〉, i.e., all fixpoints
of the fuzzy closure operator ↓↑. This also applies dually to
extents. This way, the problem of computing all formal concepts
of 〈X,Y, I〉 reduces to the problem of computing all fixpoints
of a fuzzy closure operator that is associated with 〈X,Y, I〉.

III. ALGORITHM TO COMPUTE THE LATTICE OF ALL FIXPOINTS

A. Preliminary Considerations

First, note that it is not obvious how all fixpoints of a fuzzy
closure operator C can be computed efficiently because the
definition provides only the following brute-force approach:
Generate all A ∈ LX and output those for which A = C(A).
Clearly, such an approach has an exponential time complexity
and is, hence, useless.

BELOHLAVEK et al.: COMPUTING THE LATTICE OF ALL FIXPOINTS OF A FUZZY CLOSURE OPERATOR 549

Probably, the best-known algorithm to compute fixpoints of
ordinary closure operators is Ganter’s NEXTCLOSURE algorithm
(see [23] and [24]). NEXTCLOSURE generates all fixpoints in a
lexical order. An extension of NEXTCLOSURE for fuzzy closure
operators is presented in [7], and we briefly recall this algorithm
in Section IV-A.

In this section, we develop an algorithm to compute the lat-
tice of all fixpoints of a given fuzzy closure operator, which is
inspired by Lindig’s NEXTNEIGHBOR algorithm [36] that com-
putes ordinary concept lattices.

Our goal is the following. Given a fuzzy closure operator C
in a set Y .

1) Compute all fixpoints of C.
2) For each fixpoint A ∈ fix(C), compute the sets of its direct

upper and lower neighbors w.r.t. to ⊆ (inclusion on fuzzy
sets; see Section II-A).

Thus, our goal is to compute all fixpoints of C with the cor-
responding partial order. Translating this into the problem of
computing concept lattices (see Section II-D), we deal with the
problem of computing a concept lattice B(X,Y, I), along with
the subconcept–superconcept ordering. The information regard-
ing direct subconcepts and superconcepts is important for appli-
cations. For instance, it allows the navigation of users through
the concept lattice. Moreover, such information is necessary for
some methods to draw diagrams of concept lattices.

We assume that the set Y (universe) is finite and that L (set of
truth degrees) is finite and linearly ordered (i.e., a finite chain).
Namely, if either Y or L is infinite, fix(C) may also be infinite.
Note that the assumption of L being linearly ordered is not
essential, namely, the algorithm could easily be extended to
non-linear finite lattices L by using linear extensions of the
possibly non-linear order on L. However, we do not discuss
this issue here since in applications, one usually uses linearly
ordered L.

Also, note that neither the definition of a fuzzy closure oper-
ator nor the algorithm proposed later in this section make any
use of the residuum and multiplication on L, i.e., the algorithm
works with a finite chain of truth degrees and makes use of the
chain ordering only. We, however, use residuated chains in the
examples and experiments because we need residuum to define
the fuzzy closure operators C = ↑↓, i.e., the fuzzy closure oper-
ators from FCA that we use in the examples (see Sections II-C
and D).

Furthermore, we assume that for each A ∈ LX , the closure
C(A) of A can be computed efficiently. The complexity of
computing the closures C(A) affects the complexity of the
algorithm.

In Section III-B, we describe an algorithm that computes all
upper neighbors of a given fixpoint. This algorithm is utilized
by the algorithm that computes all fixpoints, which is presented
in Section III-C.

B. Computing Upper Neighbors

Assume that L = {a1 , . . . , ak} (set of truth degrees) such that
0 = a1 < a2 < · · · < ak = 1. For i < k, we write a+

i instead
of ai+1 .

Definition 1 (Upper neighbor): D ∈ fix(C) is called an upper
neighbor of B ∈ fix(C) with respect to C, which is written as
B ≺C D, if we have the following.

1) B ⊂ D.
2) There is no D′ ∈ fix(C) such that B ⊂ D′ ⊂ D.
Lower neighbors can be defined dually.
Remark 2: Note that if C is ↓↑ (cf., Section II-D), then the

upper neighbors of an intent B with respect to ↓↑ are exactly
the intents of the direct subconcepts of 〈B↓, B〉 because larger
intents correspond to smaller concepts (see (6)). Dually, if C
is ↑↓, then the upper neighbors of an extent A are exactly the
extents of the direct superconcepts of 〈A,A↑〉.

For brevity, we introduce the following notation.
Notation 1: For each B ∈ LY and y ∈ Y such that B(y) < 1,

let [y]CB denote C
(
B ∪ {B (y)+

/y}
)
. From now onward, if we

write [y]CB , we tacitly assume that B(y) < 1.
Definition 2 (Generators of upper neighbors): If [y]CB is an up-

per neighbor of B w.r.t. C, then [y]CB is called an upper neighbor
generated by y; y is called a generator of [y]CB .

Example 2: In general, B ⊆ [y]CB , but [y]CB need not be an
upper neighbor of B ∈ fix(C). There can exist a B′ ∈ fix(C)
such that B ⊂ B′ ⊂ [y]CB . Indeed, consider the context on the
left side of Fig. 1, and let L be the three-element Łukasiewicz
algebra. Assume that C is ↓↑. For B = {0.5/y3 ,

0.5/y4 , y5},
we have [y1]CB = {0.5/y1 ,

0.5/y2 ,
0.5/y3 , y4 , y5}, and [y3]CB =

{0.5/y1 ,
0.5/y2 , y3 , y4 , y5}. Hence, in this case, B ⊂ [y1]CB ⊂

[y3]CB , i.e., [y3]CB is not an upper neighbor of B.
The following notation fixes an ordering on Y . The order

in which the upper neighbors are computed depends on this
ordering.

Notation 2: Assume that Y = {y1 , . . . , yn}, and consider a
fixed ordering of attributes from Y given by the indexes, i.e.,
yi < yj if i < j.

The following assertion says that each upper neighbor is, in
fact, an upper neighbor that is generated by some y. In addition,
the generator y can be chosen such that it is the greatest generator
with respect to the ordering of attributes from Notation 2.

Lemma 1: The following claims are true for every fuzzy
closure operator C: LY → LY .

1) For each B ∈ LY and y ∈ Y such that B(y) < 1, we have
B(y) < ([y]CB)(y).

2) Let B,D ∈ fix(C) such that B ⊂ D, and let

i = max{j |B(yj) < D(yj)}. (9)

Then, for each k > i, D(yk) = B(yk). Moreover, if B ≺C

D, then D = [yi]CB .
Proof: Point 1) immediately follows from B(y) < B(y)+ =(

B ∪ {B (y)+
/y}

)
(y) ≤ C

(
B ∪ {B (y)+

/y}
)
(y) = ([y]CB)(y).

To prove 2), let B,D ∈ fix(C) such that B ⊂ D. The
first claim of 2) follows directly from (9) and from B ⊂ D.
To check the second claim of 2), suppose B ≺C D. By
(9), B(yi) < D(yi); hence, B(yi)+ ≤ D(yi). Now, B(yi) <

B(yi)+ ≤ D(yi) implies B ∪ {B (yi)+
/yi} ⊆ D, which yields

[yi]CB = C
(
B ∪ {B (yi)+

/yi}
)
⊆ C(D) = D because D is a fix-

point of C. Furthermore, from B ⊂ [yi]CB ⊆ D, it follows that

550 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 3, JUNE 2010

[yi]CB = D because [yi]CB ∈ fix(C), and D, by assumption, is an
upper neighbor of B. �

As shown by Lemma 1, the indexes that are defined by (9)
play an important role. Therefore, we introduce the following
notation.

Notation 3: For C: LY → LY , B,D ∈ fix(C) such that B ⊂
D, and i given by (9), let yC

B (D) denote yi ∈ Y .
Theorem 2: Let C: LY → LY be a fuzzy closure operator

and B ∈ fix(C). Moreover, let MC
B ⊆ Y be defined by

MC
B = {y ∈ Y |B ≺C [y]CB and y = yC

B ([y]CB)}. (10)

Then, {[y]CB | y ∈ MC
B } is the set of all upper neighbors of B.

Proof: Note that yC
B and, consequently, MC

B depend on the
ordering of Y that is introduced in Notation 2. By point 2) of
Lemma 1, MC

B consists of the maximal elements of Y that
generate the upper neighbors [y]CB of B (cf., (9) and Notation
2). Clearly, {[y]CB | y ∈ MC

B } is then the set of all the upper
neighbors of B. �

Hence, in order to compute the upper neighbors, it suffices to
determine MC

B . The following theorem provides a quick test of
membership in MC

B .
Theorem 3: Let B ∈ fix(C) and yi ∈ Y such that yi =

yC
B ([yi]CB). Then, we have yi ∈ MC

B iff for each yk ∈ MC
B such

that k < i we have ([yi]CB)(yk) = B(yk).
Proof: Let B ∈ fix(C), and let yi ∈ Y such that yi =

yC
B ([yi]CB). Then, (9) implies ([yi]CB)(yi) > B(yi), and

([yi]CB)(yk) = B(yk) (k > i).
“⇒”: Let yi ∈ MC

B , i.e., B ≺C [yi]CB . Take any yk ∈ MC
B

such that k < i. Suppose, by contradiction, ([yi]CB)(yk) >
B(yk). Since we then have

B(yk) < B(yk)+ ≤ ([yi]CB)(yk)

we get B ∪ {B (yk)+
/yk} ⊆ [yi]CB , i.e.,

B ⊂ [yk]CB = C
(
B ∪ {B (yk)+

/yk}
)
⊆ C

(
[yi]CB

)
= [yi]CB .

(11)
Since yi ∈ MC

B and yk ∈ MC
B , we have B ≺C [yi]CB and B ≺C

[yk]CB . Then, (11) yields [yk]CB = [yi]CB . From yk = yC
B ([yk]CB)

and k < i, it follows that ([yk]CB)(yi) = B(yi), which is a
contradiction to ([yk]CB)(yi) = ([yi]CB)(yi) > B(yi). Therefore,
([yi]CB)(yk) = B(yk).

“⇐”: Conversely, let ([yi]CB)(yk) = B(yk) be true for each
yk ∈ MC

B such that k < i. We prove that yi ∈ MC
B . To prove

this claim, it suffices to check that no [y]CB , where yi 	= y ∈ MC
B ,

is contained in [yi]CB because this yields B ≺C [yi]CB from which
the claim follows evidently. Thus, yi 	= y ∈ MC

B . If y = yk ,
where k < i, then, by assumption of the “⇐” part of Theorem
3, ([yi]CB)(yk) = B(yk). Thus, [yk]CB cannot be contained in
[yi]CB because

([yk]CB)(yk) > B(yk) = ([yi]CB)(yk).

If i < k, we have ([yi]CB)(yk) = B(yk) on account of
yC

B ([yi]CB) = yi . Hence, again, [yk]CB cannot be contained in
[yi]CB , which proves that yi ∈ MC

B . �
Theorem 3 leads to procedure NEIGHBORS that computes all

upper neighbors. The procedure accepts C: LY → LY and B ∈

fix(C) as its inputs, and it outputs the set of all upper neighbors
of B.

Theorem 4: Procedure NEIGHBORS is correct, i.e., for a given
fuzzy closure operator C: LY → LY in a finite nonempty set
Y and a fuzzy set B ∈ fix(C), it stops after finitely many steps
and returns the set of all upper neighbors of B.

Proof: Note that Y is an arbitrary set of attributes. In order
to apply previous observations, we have to introduce an explicit
linear order on the attributes from Y (see Notation 2). We may
assume that the ordering of attributes is given by the order in
which the loop between lines 3 and 11 processes the attributes,
i.e., z < y will denote that z ∈ Y is processed in the body of
the loop before y ∈ Y is processed in that loop. Let us note that
the order on Y plays only a technical role for the proof and has
no influence on the set of computed concepts.

The algorithm uses the following variables: U is a set of
upper neighbors that is initially empty, and Min is an ordinary
set of elements from Y that is to be understood as a set of
possible generators of upper neighbors of B. The roles of U
and Min are the following. At the beginning, Min is set to {y ∈
Y |B(y) < 1}. During the computation, from Min, we remove
those elements y that are not generators of upper neighbors
of B. At the end of the computation, Min = MC

B , i.e., only
generators of upper neighbors of B are left in Min. As we can
see from lines 4, 7, and 9, y is left in Min iff D = [y]CB is
added to U . Furthermore, Increased is a set of elements of Y
that are distinct from the currently processed elements y, which
belong to D = [y]CB to a strictly greater degree than to B. The
important part of the algorithm is the test present in line 6.
By mathematical induction, it can be shown that during each
cycle of the main loop, Min can be seen as a union of My =
{z ∈ MC

B | z < y}, and Ny = {z ∈ Y | y ≤ z}, where y is the
currently processed element. Observe that Min ∩ Increased = ∅
is true iff (My ∪ Ny) ∩ Increased = ∅ iff (My ∩ Increased) ∪
(Ny ∩ Increased) = ∅ iff both My ∩ Increased = ∅ and Ny ∩
Increased = ∅, which is true iff 1) for each z ∈ Min, which has
already been processed (i.e., z < y), we have D(z) = B(z);
and 2) yC

B (D) = y. Thus, Theorem 3 proves that the test in line
6 is successful iff D = [y]CB is an upper neighbor of B such that
y ∈ MC

B . Hence, y can be left in Min, and D is added to U ,
which occurs between lines 6 and 10. Hence, by induction, we
have shown that at the end of computation, Min = MC

B , and

BELOHLAVEK et al.: COMPUTING THE LATTICE OF ALL FIXPOINTS OF A FUZZY CLOSURE OPERATOR 551

U = {[y]CB | y ∈ MC
B }. Theorem 2, thus, yields that U is the set

of all upper neighbors of B. �
Example 3: Let us return to Example 1. Consider the

formal context from the left side of Fig. 1, and let C be
↓↑. Assume that our structure of truth degrees is the three-
element Łukasiewicz algebra. Let B = {0.5/y3 ,

0.5/y4 , y5}.
When NEIGHBORS (B,C) is invoked, the procedure runs as fol-
lows. First, Min is set to {y1 , y2 , y3 , y4}. Then, y1 ∈ Y is pro-
cessed. We get D = [y1]CB = {0.5/y1 ,

0.5/y2 ,
0.5/y3 , y4 , y5} and

Increased = {y2 , y4}, i.e., y1 is removed from Min. We continue
with y2 ∈ Y for which D = {0.5/y1 ,

0.5/y2 ,
0.5/y3 , y4 , y5}, and

Increased = {y1 , y4}. Thus, y2 is also removed from Min. Note
that y1 , y2 were removed from Min, although both the attributes
are generators of the upper neighbor D of B. This is correct
because none of them equals yC

B (D). In the next step, we pro-
cess y3 ∈ Y : D = {0.5/y1 ,

0.5/y2 , y3 , y4 , y5}, and Increased =
{y1 , y2 , y4}. Again, y3 is removed from Min only this time; y3 is
not even a generator of an upper neighbor of B. Finally, we pro-
cess y4 ∈ Y , in which case, D = {0.5/y1 ,

0.5/y2 ,
0.5/y3 , y4 , y5},

and Increased = {y1 , y2}. Since Min = {y4}, we add D to U .
Then, U is returned as the result of NEIGHBORS (B,C).

C. Computing All Fixpoints

Now, the algorithm to compute all fixpoints can be described
as follows. We start with the least fixpoint of C, which is C(∅),
i.e., the closure of the empty set, and add it to the collection
of found fixpoints. For each newly added fixpoint, we first use
NEIGHBORS to compute its upper neighbors, and then, we update
the information about lower neighbors (D is an upper neighbor
of B iff B is a lower neighbor of D). For each upper neighbor
that has not been found in previous steps, we recursively repeat
the process until we arrive at Y , which is the greatest fixpoint
of C.

The whole procedure can be summarized by two separate
procedures: Procedure LATTICE accepts a fuzzy closure operator
C: LY → LY and Y as its input and initiates the recursive
generation of fixpoints starting with the least one. The auxiliary
procedure GENERATEFROM does the actual job of generating
fixpoints. Both the procedures use the following variables: F
is a collection of fixpoints that are computed in the previous
steps, B∗ is the set of all upper neighbors of B, and B∗ is
the set of all lower neighbors of B. N is a local variable in
GENERATEFROM, and it represents fixpoints that were newly
found during a particular recursive call of the procedure.

Theorem 5: Procedure LATTICE is correct, i.e., for a given
set Y and a fuzzy closure operator C: LY → LY , it stops after
finitely many steps and returns the collection of all fixpoints of
C, together with the sets of upper and lower neighbors for each
of the fixpoints of C.

Proof: Observe that each fixpoint of C is processed only once
in GENERATEFROM. This is ensured in line 11 of the procedure,
where GENERATEFROM is called only for those fixpoints that
have not been found so far (see definition of N in line 3).
The information about lower neighbors (line 5) is also updated
correctly because each B (which is considered only once) is a
lower neighbor only of those fixpoints that are upper neighbors

Fig. 2. Order of formal concepts computed by (left) GENERATEFROM and
(right) the algorithm from [7].

of B. The fact that the computation stops after finitely many
steps is also evident because GENERATEFROM is called exactly
once for each fixpoint. �

Remark 3: Now, consider the computation of concept lattices,
i.e., we consider C = ↓↑ (cf., Section II-D). The order in which
GENERATEFROM computes the intents (of formal concepts) dif-
fers from the order in which the intents are computed by the
algorithm from [7]. For instance, the two algorithms compute
the formal concepts from Example 1 in two distinct orders that
are depicted in Fig. 2. The nodes in the diagrams are labeled
by numbers that indicate the order in which the nodes are com-
puted. The left side of Fig. 2 corresponds to GENERATEFROM,
and the right side of Fig. 2 corresponds to the algorithm from [7].

IV. EXPERIMENTAL EVALUATION

The algorithm that is presented in Section III computes fix-
points of fuzzy closure operators together with their hierar-
chy with a time delay (we refer to the literature on computa-
tional complexity for the concept of a time-delay complexity,
e.g., [31]) that depends on the complexity of computing the

552 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 3, JUNE 2010

closure C(A). For instance, for C = ↓↑, the algorithm has a
polynomial time-delay complexity. The arguments for this claim
are the same as in case of the algorithm that is described in [7]. In
this section, we mainly focus on a practical performance of our
algorithm and compare it with the performance of the algorithm
from [7], which we briefly review in Section IV-A.

The efficiency of implementation of our algorithm depends
on the chosen data structures. The representation of F , which
is shared in the procedures GENERATEFROM and LATTICE (and,
consequently, B∗ and B∗, which are to be stored along with B),
is critical because the elements in F are frequently accessed
(see line 3 of procedure GENERATEFROM). To avoid a linear time
complexity of accessing the elements of F , we have organized
F 1) as a search tree (analogously as in [36]) and 2) by a dynamic
hash table. Moreover, the sets Min and Increased in procedure
NEIGHBORS can be represented by bit arrays, which significantly
increases the performance. (The condition in line 6 of procedure
NEIGHBORS can be checked by applying the bitwise AND.)

The algorithms used for the following experiments were im-
plemented in ANSI C using the aforementioned data structures
(hash tables and bit arrays). All experiments were run on an
otherwise idle Intel Pentium IV (3.00 GHz CPU and 512 MB
RAM).

A. Comparison With NEXTCLOSURE for Graded Attributes

We have run several performance tests to compare our al-
gorithm with the algorithm from [7] by computing concept
lattices using C = ↓↑ (cf., Section II-D). Since the algorithm
from [7] does not compute the hierarchy of formal concepts, in
our tests, we have included an extension of this algorithm that
computes the hierarchy after computing all the concepts. Com-
puting the complete hierarchy has asymptotic time complexity
O(n2), where n is the number of formal concepts.

For the sake of completeness, we briefly review the algorithm
from [7]. The algorithm is a natural extension of the well-known
ordinary NEXTCLOSURE [24]. It computes all formal concepts
of a fuzzy concept lattice B(X,Y, I) in a lexicographic order of
the intents. It starts with 〈∅↓, ∅↓↑〉 (which is the lexicographically
smallest formal concept when ordered by intents). Then, for
the currently computed formal concept 〈A,B〉, the algorithm
uses an efficient test to compute its lexicographic successor
〈B+ ↓

, B+ 〉. This step is repeated until the algorithm reaches
the last formal concept 〈Y ↓, Y 〉.

We performed a series of experiments with randomly gener-
ated data tables with graded attributes. The fill ratio of the tables,
i.e., the percentage of nonzero entries in the table, ranged from
5% to 90%, and the size of the tables was up to 1000 × 20 (ob-
jects × attributes). As the structures of truth degrees, we used
finite BL-chains [29] (e.g., finite linearly ordered structures with
Łukasiewicz and minimum operations) of varying size up to 101
truth degrees, i.e., up to L = {0, 0.01, 0.02, . . . , 0.98, 0.99, 1}.

Our observations are summarized by several graphs in which
the dashed lines represent average running times of the algorithm
from [7] (i.e., NEXTCLOSURE), the dotted lines show average
running times of the algorithm from [7] followed by computing

TABLE I
RUNNING TIME OF ALGORITHMS FOR L WITH FIVE DEGREES (ŁUKASIEWICZ)

Fig. 3. Dependence of running time of algorithms on the size of concept
lattice.

the hierarchy of concepts, and the solid lines correspond to the
algorithm from Section III.

In all experiments, we observed the running times of the
algorithms and their dependency on various characteristics, such
as the size of input data tables (formal contexts), distributions
of truth degrees in data tables, numbers of truth degrees in data
tables, and the like. Some of the observations are summarized
as follows.

The first experiment studies a dependency of the running time
on the size of concept lattices (which is the number of formal
concepts, i.e., fixpoints). The results of a typical experiment
are depicted in Table I and Fig. 3. Table I shows the running
times in milliseconds. Note that Łukasiewicz chains were used
as structures of truth degrees. Fig. 3 demonstrates the following
tendency: With growing sizes of concept lattices, our algorithm
significantly outperforms graded NEXTCLOSURE followed by
computing the hierarchy of concepts. The graded NEXTCLO-
SURE alone (without computing the hierarchy) is usually faster
than our algorithm.

Another series of experiments focused on the influence of
the fill ratio, i.e., the fraction of nonzero table entries in the
table. The results are shown in Fig. 4. The figure shows that the
differences in performance of the algorithms are not significant
for sparse data tables, i.e., data tables where most entries are
zeros. If the data tables become dense, our algorithm is several
times faster than graded NEXTCLOSURE algorithm followed by
the computation of hierarchy.

In all the previous tests, we used Łukasiewicz chains as struc-
tures of truth degrees. The experiments in which we used dif-
ferent structures of truth degrees have shown similar average
behavior. For instance, Fig. 5 shows the dependency of the run-
ning time on the number of formal concepts if we use structures
of truth degrees with minimum conjunction (Gödel structures)
instead of the Łukasiewicz one.

BELOHLAVEK et al.: COMPUTING THE LATTICE OF ALL FIXPOINTS OF A FUZZY CLOSURE OPERATOR 553

Fig. 4. Running time of algorithms for data tables 500 × 20.

Fig. 5. Running time of algorithms for L with minimum conjunction (Gödel).

We can see from the figures in this section that the algorithm
from [7] is the best, given that we want to compute only formal
concepts. If we wish to compute the lattice order as well (this
is necessary if we want to depict the resulting hierarchy by its
Hasse diagram), the algorithm that is proposed in this paper is
considerably faster than graded NEXTCLOSURE followed by the
computation of hierarchy.

B. Computing Fuzzy Concept Lattices Using Algorithms for
Ordinary Concept Lattices

It is well known that every fuzzy concept lattice is isomorphic
to an ordinary concept lattice [6], [40], namely, a fuzzy concept
lattice B(X,Y, I) is isomorphic to an ordinary concept lattice
B(X × L, Y × L, I×), where the incidence relation I× between
sets X × L and Y × L is defined by 〈〈x, a〉, 〈y, b〉〉 ∈ I× iff
a ⊗ b ≤ I(x, y). As a result, to compute a fuzzy-concept lattice
B(X,Y, I), the classic algorithms may be used to compute ordi-
nary concept lattices as follows: First, 〈X,Y, I〉 is transformed
to 〈X × L, Y × L, I×〉; second, a classic algorithm is applied
to compute B(X × L, Y × L, I×) (and then, B(X,Y, I) is ob-
tained by a straightforward transformation [6], [40]).

A question that we answer in this section is how the perfor-
mance of the algorithm described in Section III can be compared
with the performance of the earlier procedure in which one first
transforms the data are transformed first, and then, classic algo-
rithms are applied to compute ordinary concept lattices. For this
purpose, we use Lindig’s NEXTNEIGHBOR [36], which is one of

Fig. 6. Average running time of (solid line) our algorithm using fuzzy closure
operators that are induced by graded contexts and (dotted line) the classic algo-
rithm [36] using closure operators that are induced by corresponding bivalent
contexts. The graph shows time dependency on the size of concept lattice for L
with Łukasiewicz operations.

Fig. 7. Average running time of (solid line) our algorithm using fuzzy closure
operators that are induced by graded contexts and (dotted line) the classic
algorithm [36] using closure operators that are induced by the corresponding
bivalent contexts. The graph shows time dependency on the size of concept
lattice for L with minimum (Gödel) operations.

the fastest and most widely used classic algorithms that com-
pute ordinary concept lattices (i.e., sets of all formal concepts
with the lattice order) (see [35]). In addition, our algorithm is
an extension of classic Lindig’s algorithm for graded attributes.

We performed a series of experiments with randomly gener-
ated data tables with graded attributes. In these experiments, the
fill ratio of the tables ranged from 5% to 33%, and the size of the
tables was up to 50 × 20. The finite linearly ordered structures
with Łukasiewicz and minimum (Gödel) operations, which are
used as the structures of truth degrees, were of varying size up
to 21 truth degrees.

As in the experiments described in the previous section, we
observed the running times of the computations and their de-
pendency on various characteristics. The results that show the
dependency of the running time on the size of concept lattices are
depicted in Figs. 6 and 7 for Łukasiewicz operations and min-
imum operations, respectively. In the graphs, the dotted lines
show average running times of the computation on transformed
data with bivalent attributes, and the solid lines correspond to
the computation on the original data with graded attributes.

We can see that the computation of the concept lattices of
bivalent data, which is transformed from graded data, is very

554 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 3, JUNE 2010

expensive. Our algorithm is considerably faster, especially in the
case of the structures of truth degrees with minimum operations
(see Fig. 7). This shows the usefulness of our algorithm, i.e., an
algorithm that is designed directly for data with fuzzy attributes.

V. APPLICATION

In this section, we present an application of the algorithm
from Section III in the area of exploratory data analysis, namely,
in factor analysis of data with fuzzy attributes. The main aim
in factor analysis (see, e.g., [1]) is to extract possibly a small
number of factors from a data matrix that describes objects
and their attributes, and provide a model that explains the data
in terms of the discovered factors. In the case of real-valued
attributes, classic factor analysis and its various generalizations
proved to be useful. In the case of binary data, various methods
have been proposed (see, e.g., [22] and references therein). It
has been proved in [13] that formal concepts associated with
the input binary matrix are optimal factors for Boolean factor
analysis and an efficient approximation algorithm is developed
for Boolean factor analysis based on the optimality result. The
case of binary data was extended to data with fuzzy attributes
in [9] and [12]. In the following, we describe the factor analysis
of data with fuzzy attributes and show how the algorithm from
Section III can be used to extract factors from such data. We
also include an illustrative example.

The input data consist of an n × m matrix that describes n ob-
jects (matrix rows) and m attributes (matrix columns). A matrix
entry that corresponds to row i and column j is interpreted as the
degree to which attribute j applies to object i. As mentioned pre-
viously, the degrees are considered to belong to some complete
residuated lattice L. Clearly, such a matrix can be identified with
a binary fuzzy relation I between X = {1, . . . , n} (objects) and
Y = {1, . . . ,m} (attributes). The aim of factor analysis is to de-
compose I into a product I = A ◦ B of an n × k object-factor
matrix A and a k × m factor-matrix B, with the number k of
factors as small as possible. A ◦ B is the sup-t-norm product,
i.e., (A ◦ B)ij =

∨k
l=1 Ail ⊗ Blj . The new k factors revealed

by such a decomposition can be interpreted as new (more gen-
eral or substantial) variables of which the original m attributes
are particular manifestations. Ail and Blj are interpreted as the
degrees to which factor l applies to object i and to which attribute
j is a particular manifestation of factor l, respectively.

The following theorem, which can be regarded as an optimal-
ity theorem that shows that formal concepts from the concept
lattice B(X,Y, I) of I are optimal factors for such decomposi-
tions, was proven in [9].

Theorem 6: If I = A ◦ B for n × k and k × m binary matri-
ces A and B, there exists a set F ⊆ B(X,Y, I) of formal con-
cepts of I with |F| ≤ k such that for the n × |F| and |F| × m
matrices AF and BF , we have I = AF ◦ BF .

In this theorem, the matrices AF and BF are constructed from
F as follows. The columns of AF are the extents of the formal
concepts fromF , and the rows of BF are the intents of the formal
concepts from F . That is for F = {〈C1 ,D1〉, . . . , 〈Ck ,Dk 〉},
we put (AF)il = Cl(i), and (BF)lj = Dl(j). Thus, the concept
lattice B(X,Y, I) that is associated with the input matrix I

TABLE II
2004 OLYMPIC GAMES DECATHLON—SCORES OF TOP FIVE ATHLETES

plays the role of a space of optimal factors (formal concepts)
that are hierarchically ordered by the subconcept–superconcept
relation ≤.

In [12], the authors developed a greedy approximation al-
gorithm of computing the optimal decompositions I = A ◦ B.
The algorithm works as follows. In step 1, the concept lattice
B(X,Y, I) is computed from the input matrix I . In step 2, a
particular greedy strategy is used, and the current best factor (a
formal concept that “explains” the largest portion of yet “unex-
plained data”) is selected iteratively. The algorithm continues
until all data are “explained” by the selected factors. This way,
the algorithm selects a small set F of factors from B(X,Y, I)
for which I = AF ◦ BF .

The algorithm that is described in Section III (cf., Section II-D
and Remark 3) can be employed in step 1. The subconcept–
superconcept hierarchy ≤ on the set B(X,Y, I) of all formal
concepts represents an important structure on the set of factors.
Namely, due to ≤, the set of factors is not flat. Instead, it has a
natural hierarchical structure that represents a useful informa-
tion for a user. Moreover, during step 2, a user may be asked
if the current candidate factor to be added to F has a good in-
terpretation and makes sense in the particular domain. If yes,
the factor is added to F . If not, the user may either browse
the neighborhood of the candidate factor in the hierarchically
ordered space B(X,Y, I) of all factors and select another one
(with a better interpretation while still explaining a large portion
of unexplained data) or ask the algorithm to generate another
candidate factor. In the following, we present an illustrative ex-
ample of factor analysis of ordinal data that is performed by the
procedure described in this paragraph.

Table II contains the results of top five athletes in 2004
Olympic Games decathlon in points that are obtained using the
International Association of Athletics Federations (IAAF) Scor-
ing Tables for Combined Events. Note that the IAAF Scoring
Tables provide us with an ordinal scale and a ranking function
assigning the scale values to athletes. We are going to look at
whether there are some general factors in terms of sports phys-
iology that explain these results.

We first transform the data to a five-element scale

L = {0.00, 0.25, 0.50, 0.75, 1.00}

by a natural transformation and rounding. As a consequence, the
factors then have a simple reading, namely, the grades to which a
factor applies to an athlete can be described in natural language
as “not at all,” “little bit,” “half,” “quite,” “fully,” or the like. In

BELOHLAVEK et al.: COMPUTING THE LATTICE OF ALL FIXPOINTS OF A FUZZY CLOSURE OPERATOR 555

TABLE III
FACTOR FORMAL CONCEPTS FOR DECATHLON DATA

Fig. 8. (First line) Rectangular matrices that represent the factors for decathlon data. (Second line)
∨

-superposition of factors.

addition, we use the Łukasiewicz t-norm on L. The following
array visually represents the resulting 5 × 10 matrix I:

The rows and columns correspond to the athletes and
decathlon disciplines, respectively. The entries are colored
boxes that represent degrees from a five-element scale L =
{0, 0.25, 0.5, 0.75, 1} (the darker the color, the larger the de-
gree). Using the previously described algorithm, matrix I was
decomposed into a product I = AF ◦ BF of a 5 × 7 matrix
AF and a 7 × 10 matrix BF , with a set F = {〈Cl,Dl〉 | l =
1, . . . , 7} being a set of formal concepts of I that is described
later. Note that the user always accepted the first-candidate for-
mal concept in this case. The decomposition found by the algo-
rithm described previously is depicted as follows:

Matrix AF is the bottom left matrix with athletes’ names la-
beling the rows; matrix BF is the top matrix with disciplines’
names labeling the columns. As mentioned previously, the lth
column of AF and the lth row of BF are the vectors that cor-
respond to the extent Cl and the intent Dl , respectively, of the
lth factor Fl = 〈Cl,Dl〉 (l = 1, . . . , k). The formal concepts
(factors) from F are depicted with a detailed description in
Table III.

The first line of Fig. 8 shows the rectangular matrices that cor-
respond to the factors from F = {F1 , . . . , F7}. The rectangular
matrix that corresponds to Fl = 〈Cl,Dl〉 is constructed as the
Cartesian product of Cl and Dl , i.e., the entry at row i and col-
umn j is Cl(i) ⊗ Dl(j). Since I = AF ◦ BF , the input matrix
is then equal to the

∨
-superposition of the rectangular matrices

that correspond to the factors, i.e., Iij =
∨7

l=1 Cl(i) ⊗ Dl(j)
(see [9]). The second line of Fig. 8 shows the

∨
-superpositions

F1 ∨ · · · ∨ Fl of the first l factors (l = 1, . . . , 7). As we can see
from the visual inspection of the matrices, already the first two or
three factors explain the data reasonably well, i.e., F1 ∨ · · · ∨ F3
approximates I reasonably well.

Let us now consider the interpretation of the first three fac-
tors. For this purpose, it is convenient to inspect the rectangular
matrices from the first line of Fig. 8 and, to see more details,
Table III. FactorF1 : Manifestations of this factor with grade 1
are 100 m, long jump, and 110 m hurdles. This factor can be
interpreted as the ability to run fast for short distances. Note
that this factor particularly applies to Clay and Karpov, which
is well known in the world of decathlon. FactorF2 : Manifesta-
tions of this factor with grade 1 are long jump, shot put, high
jump, 110 m hurdles, and javelin. F2 can be interpreted as the
ability to apply very high force in a very short term (explosive-
ness). F2 particularly applies to Sebrle and, to a lesser degree, to
Clay, who are known for this ability. FactorF3 : Manifestations
with grade 1 are high jump and 1500 m. This factor is typical
for lighter, and not very muscular, athletes. (Too many muscles

556 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 3, JUNE 2010

prevent jumping high and running long distances.) Macey, who
is evidently that type among decathletes (196 cm and 98 kg), is
the athlete to whom the factor applies to degree 1. These are the
most important factors behind data matrix I .

VI. CONCLUSION

We presented an algorithm that computes all fixpoints of a
given fuzzy closure operator in a finite set over a finite chain of
truth degrees, along with the partial order on the fixpoints. The
algorithm is applicable to general fuzzy closure operators. It
overcomes the exponential time complexity, which is implicitly
present in the definition of a fixpoint, by computing the partially
ordered set of fixpoints in a bottom-up manner by employing
efficient tests. We proved correctness of these tests and the algo-
rithm. Particular fuzzy closure operators appear in several areas.
We focused on FCA, where computing of fixpoints of various
closure operators is of crucial importance. In particular, we used
the problem of computing a concept lattice from data with fuzzy
attributes for experimental evaluation of our algorithm.

Future research is to be directed toward the development
of further algorithms for computing fixpoints of fuzzy closure
operators, both general fuzzy closure operators as well as various
particular closure operators. These problems were thoroughly
studied in the binary setting, i.e., for ordinary closure operators
(see, e.g., [35]). For fuzzy closure operators, however, our paper
is the first systematic contribution.

REFERENCES

[1] D. J. Bartholomew and M. Knott, Latent Variable Models and Factor
Analysis, 2nd ed. London, U.K.: E. Arnold, 1999.

[2] W. Bandler and L. Kohout, “Special properties, closures and interiors of
crisp and fuzzy relations,” Fuzzy Sets Syst., vol. 26, no. 3, pp. 317–331,
1988.

[3] R. Belohlavek, Fuzzy Relational Systems: Foundations and Principles.
New York: Kluwer/Plenum, 2002.

[4] R. Belohlavek, “Fuzzy Galois connections,” Math. Logic Q., vol. 45,
no. 4, pp. 497–504, 1999.

[5] R. Belohlavek, “Fuzzy closure operators,” J. Math. Anal. Appl., vol. 262,
pp. 473–489, 2001.

[6] R. Belohlavek, “Reduction and a simple proof of characterization of fuzzy
concept lattices,” Fundam. Inf., vol. 46, no. 4, pp. 277–285, 2001.

[7] R. Belohlavek, “Algorithms for fuzzy concept lattices,” in Proc. 4th Int.
Conf. Recent Adv. Soft Comput., Nottingham, U.K., Dec. 12–13, 2002,
pp. 200–205.

[8] R. Belohlavek, “Concept lattices and order in fuzzy logic,” Ann. Pure
Appl. Logic, vol. 128, no. 1–3, pp. 277–298, 2004.

[9] R. Belohlavek, “Optimal decompositions of matrices with grades,” in
Proc. IEEE Int. Conf. Intell. Syst., Varna, Bulgaria, 2008, pp. 15-2–15-7,
IEEE Catalog No. CFP08802-PRT, ISBN 978-1-4244-1740-7.

[10] R. Belohlavek and V. Vychodil, “Attribute implications in a fuzzy set-
ting,” in Proc. ICFCA (Lecture Notes in Artificial Intelligence, vol. 3874),
R. Missaoui and J. Schmid, Eds. Berlin, Germany: Springer-Verlag,
2006, pp. 45–60.

[11] R. Belohlavek and V. Vychodil, “Reducing the size of fuzzy concept
lattices by fuzzy closure operators,” in Proc. SCIS, ISIS, Tokyo, Japan,
Sep. 20–24, 2006, pp. 309–314, ISSN 1880-3741.

[12] R. Belohlavek and V. Vychodil, “Factor analysis of incidence data via
novel decomposition of matrices,” in Proc. Int. Conf. Formal Concept
Anal. (Lecture Notes in Computer Science, vol. 5548), 2009, pp. 83–
97.

[13] R. Belohlavek and V. Vychodil, “Discovery of optimal factors in binary
data via a novel method of matrix decomposition,” J. Comput. Syst. Sci.,
vol. 76, pp. 3–20, 2010. DOI: 10.1016/j.jcss.2009.05.002.

[14] L. Biacino and G. Gerla, “Closure systems and L-subalgebras,” Inf. Sci.,
vol. 33, pp. 181–195, 1984.

[15] L. Biacino and G. Gerla, “An extension principle for closure operators,”
J. Math. Anal. Appl., vol. 198, pp. 1–24, 1996.

[16] U. Bodenhofer, “A unified framework of opening and closure operators
with respect to arbitrary fuzzy relations,” Soft Comput., vol. 7, no. 4,
pp. 220–227, 2003.

[17] C. Carpineto and G. Romano, Concept Data Analysis. Theory and Appli-
cations. New York: Wiley, 2004.

[18] B. De Baets, E. Kerre, and M. Gupta, “The fundamentals of fuzzy mathe-
matical morphology. Part 2: Idempotence, convexity and decomposition,”
Int. J. Gen. Syst., vol. 23, pp. 307–322, 1995.

[19] B. De Baets, “Generalized idempotence in fuzzy mathematical morphol-
ogy,” in Fuzzy Techniques in Image Processing (Studies in Fuzziness and
Soft Computing, vol. 52), E. Kerre and M. Nachtegael, Eds. Heidelberg,
Germany: Physica-Verlag, 2000, pp. 58–75.

[20] B. De Baets, “Analytical solution methods for fuzzy relational equations,”
in Fundamentals of Fuzzy Sets (The Handbooks of Fuzzy Sets Series, vol.
1), D. Dubois and H. Prade, Eds. Norwell, MA: Kluwer, 2000, ch. 6,
pp. 291–340.

[21] W. Flüshöh and U. Höhle, “L-fuzzy contiguity relations and L-
fuzzy closure operators in the case of completely distributive, com-
plete lattices L,” Math. Nachrichten, vol. 145, no. 1, pp. 119–134,
1990.

[22] A. A. Frolov, D. Húsek, I. P. Muraviev, and P. A. Polyakov, “Boolean
factor analysis by Hopfield-like autoassociative memory,” IEEE Trans.
Neural Netw., vol. 18, no. 3, pp. 698–707, May 2007.

[23] B. Ganter, “Two basic algorithms in concept analysis,” Technische
Hoschule Darmstadt, Darmstadt, Germany, Tech. Rep., FB4-Preprint
no. 831, 1984.

[24] B. Ganter and R. Wille, Formal Concept Analysis. Mathematical Founda-
tions. Berlin, Germany: Springer-Verlag, 1999.

[25] G. Gerla, “Graded consequence relations and fuzzy closure operators,” J.
Appl. Non-Classical Logics, vol. 6, pp. 369–379, 1996.

[26] G. Gerla, Fuzzy Logic. Mathematical Tools for Approximate Reasoning.
Dordrecht, The Netherlands: Kluwer, 2001.

[27] J. A. Goguen, “The logic of inexact concepts,” Synthese, vol. 18, no. 3/4,
pp. 325–373, 1968.

[28] S. Gottwald, A Treatise on Many-Valued Logics. Baldock, U.K.: Re-
search Studies, 2001.

[29] P. Hájek, Metamathematics of Fuzzy Logic. Dordrecht, The Nether-
lands: Kluwer, 1998.

[30] U. Höhle, “On the fundamentals of fuzzy set theory,” J. Math. Anal.
Appl., vol. 201, pp. 786–826, 1996.

[31] D. S. Johnson, M. Yannakakis, and C. H. Papadimitrou, “On generating
all maximal independent sets,” Inf. Process. Lett., vol. 27, pp. 129–133,
1988.

[32] E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms. Dordrecht,
The Netherlands: Kluwer, 2000.

[33] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic. Theory and Applica-
tions. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[34] S. Krajči. (2005). A generalized concept lattice. Logic J. IGPL [Online].
13(5), pp. 543–550. Available: http://dx.doi:10.1093/jigpal/jzi045

[35] S. O. Kuznetsov and S. A. Obiedkov, “Comparing performance of algo-
rithms for generating concept lattices,” J. Exp. Theor. Artif. Intell., vol. 14,
no. 2/3, pp. 189–216, 2002.

[36] C. Lindig, “Fast concept analysis,” in Working With Conceptual
Structures—Contributions to ICCS 2000, G. Stumme, Ed. Aachen,
Germany: Shaker-Verlag, 2000, pp. 152–161.

[37] A. S. Mashour and M. H. Ghanim, “Fuzzy closure spaces,” J. Math. Anal.
Appl., vol. 106, pp. 154–170, 1985.

[38] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. (2009). Formal concept
analysis via multi-adjoint concept lattices. Fuzzy Sets Syst. [Online]. 160,
pp. 130–144. Available: http://dx.doi.org/10.1016/j.fss.2008.05.004

[39] V. Murali, “Lattice of fuzzy subalgebras and closure systems in IX ,”
Fuzzy Sets Syst., vol. 41, pp. 101–111, 1991.

[40] S. Pollandt, Fuzzy Begriffe. Berlin, Germany: Springer-Verlag, 1997.
[41] R. O. Rodrı́guez, F. Esteva, P. Garcia, and L. Godo, “On implicative

closure operators in approximate reasoning,” Int. J. Approx. Reason.,
vol. 33, pp. 159–184, 2003.

[42] R. Wille, “Restructuring lattice theory: An approach based on hierarchies
of concepts,” in Ordered Sets, I. Rival, Ed. Dordrecht, The Netherlands:
Reidel, 1982, pp. 445–470.

[43] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.

BELOHLAVEK et al.: COMPUTING THE LATTICE OF ALL FIXPOINTS OF A FUZZY CLOSURE OPERATOR 557

Radim Belohlavek (SM’07) received the B.Sc. de-
gree in theoretical cybernetics and informatics and
systems science from Palacky University, Olomouc,
Czech Republic, and the M.Sc. degree (summa cum
laude) from Palacky University in 1994, the Ph.D.
degrees in computer science and mathematics from
Technical University of Ostrava, Czech Republic and
Palacky University, Olomouc, Czech Republic, in
1998 and 2001, respectively, and the D.Sc. degree
in computer science from the Academy of Sciences
of the Czech Republic, Prague, Czech Republic, in

2008.
He was appointed a Full Professor of computer science by the President

of the Czech Republic in 2005. From 2001 to 2007, he was the Head of the
Department of Computer Science, Palacky University. Since 2007, he has been
a Professor of systems science with Binghamton University—State University
of New York, Binghamton. His current research interests include the areas of
uncertainty and information, logic and algebra, fuzzy logic and fuzzy sets, and
relational data analysis. He was a principal investigator of numerous grants in
these areas. He has authored two monographs (Kluwer/Springer). He is also
the author or coauthor of more than 130 papers presented at conferences and
published in journals, including the Journal of Computer and System Sciences,
Annals of Pure and Applied Logic, the Archive for Mathematical Logic, Neural
Computation, the Journal of Logic and Computation, the Journal of Mathe-
matical Analysis and Applications, Fundamenta Informaticae, Fuzzy Sets and
Systems, Information Sciences, the International Journal of General Systems,
the Journal of Experimental and Theoretical Artificial Intelligence, and Mathe-
matical Logic Quarterly.

Prof. Belohlavek is a Member of the Association for Computing Machinery
and the American Mathematical Society.

Bernard De Baets was born in 1966. He received the
M.Sc. and Ph.D. degrees in mathematics in 1988 and
1995, respectively, and postgraduated in knowledge
technology in 1991, all summa cum laude from Ghent
University, Ghent, Belgium.

Since 2008, he has been a Full Professor of applied
mathematics with Ghent University, where he leads
KERMIT, the Research Unit Knowledge-Based Sys-
tems. He has authored or coauthored more than 190
papers published in international journals and nearly
50 book chapters. He is a member of the Editorial

Boards of various international journals, in particular, Co-Editor-in-Chief of
Fuzzy Sets and Systems.

Prof. De Baets coordinates EUROFUSE, which is the EURO Working Group
on Fuzzy Sets, and is a member of the Board of Directors of the European So-
ciety for Fuzzy Logic and Technology, the Technical Committee on Artificial
Intelligence and Expert Systems of the International Association of Science
and Technology for Development, and the Administrative Board of the Belgian
Operations Research (OR) Society. He was a recipient of the Government of
Canada Award in 1988. In 2006, he became Honorary Professor of Budapest
Tech, Hungary.

Jan Outrata received the B.Sc. degree in computer
science, the M.Sc. degree in 2003, and the Ph.D. de-
gree in mathematics in 2006, all from Palacky Uni-
versity, Olomouc, Czech Republic.

Since 2005, he has been with the Department
of Computer Science, Palacky University. His cur-
rent research interests include fuzzy logic, fuzzy re-
lational systems, relational data analysis, clustering,
and knowledge engineering. He has authored or coau-
thored more than 20 papers presented at conferences
and published in journals, including the Journal of

Computer and System Sciences, the International Journal of General Systems,
and the International Journal Foundations of Computer Science.

Vilem Vychodil received the B.Sc. degree in com-
puter science, the M.Sc. degree in 2002, and the Ph.D.
degree in mathematics in 2004, all from Palacky Uni-
versity, Olomouc, Czech Republic.

From 2000 to 2007, he was with the Depart-
ment of Computer Science, Palacky University. Since
2007, he has been with the Department of Systems
Science and Industrial Engineering, T. J. Watson
School of Engineering and Applied Science,
Binghamton University—State University of New
York, Binghamton. His current research interests in-

clude fuzzy logic, fuzzy relational systems, relational data analysis, uncertainty
in data, mathematical logic, and logical foundations of knowledge engineering.
He has authored one monograph (Springer). He is also the author or coauthor
of more than 70 papers presented at conferences and published in journals,
including the Archive for Mathematical Logic, Mathematical Logic Quarterly,
the Logic Journal of the Interest Group in Pure and Applied Logic, the Journal
of Experimental and Theoretical Artificial Intelligence, Fuzzy Sets and Systems,
and the Journal of Multiple-Valued Logic and Soft Computing.

Dr. Vychodil is a member of the Association for Computing Machinery.

