Eduard Bartl - publikace

RNDr. Eduard Bartl, Ph.D. Publications


journal papers

  1. Optimal decompositions of matrices with grades into binary and graded matrices.
    Annals of Mathematics and Artificial Intelligence 59 (2)(2010), pp. 151-167, Springer.
    [ISSN Print: 1573-7470, ISSN Online: 1012-2443, DOI: 10.1007/s10472-010-9185-y]
    (coauthors R. Bělohlávek, J. Konečný)
    citations (without selfcitations): 2 WoS, 5 Scopus, 6 Google Scholar
  2. Knowledge Spaces with Graded Knowledge States.
    Information Sciences 181 (8)(2011), pp. 1426-1439, Elsevier Sciences.
    [ISSN: 0020-0255, DOI: 10.1016/j.ins.2010.11.040]
    (coauthor R. Bělohlávek)
    citations (without selfcitations): 2 WoS, 2 Scopus, 4 Google Scholar
  3. Sup-t-norm and inf-residuum are a single type of relational equations.
    International Journal of General Systems 40 (6)(2011), pp. 599-609, Taylor & Francis.
    [DOI:10.1080/03081079.2011.571438]
    (coauthor R. Bělohlávek)
    citations (without selfcitations): 4 WoS, 6 Scopus, 6 Google Scholar
  4. Bivalent and Other Solutions of Fuzzy Relational Equations via Linguistic Hedges.
    Fuzzy Sets and Systems 187 (1)(2012), pp. 103-112, Elsevier.
    [ISSN: 0165-0114, DOI: 10.1016/j.fss.2011.05.020]
    (coauthors R. Bělohlávek, V. Vychodil)
    citations (without selfcitations): 3 WoS, 6 Scopus, 7 Google Scholar
  5. Fuzzy relational equations in general framework.
    International Journal of General Systems 43 (1)(2014), pp. 1-18, Taylor & Francis.
    [DOI: 10.1080/03081079.2013.850197]
    (coauthor G. J. Klir)
    citations (without selfcitations): 1 WoS, 1 Scopus, 1 Google Scholar
  6. Minimal solutions of generalized fuzzy relational equations: probabilistic algorithm based on greedy approach.
    Fuzzy Sets and Systems 260 (1)(2015), pp. 25-42, Elsevier.
    [ISSN: 0165-0114, DOI: 10.1016/j.fss.2014.02.012]
    citations (without selfcitations): 2 WoS, 3 Scopus, 3 Google Scholar
  7. Hardness of Solving Relational Equations.
    IEEE Transactions on Fuzzy Systems 23 (6)(2015), pp. 2435-2438, IEEE.
    [ISSN: 1063-6706, DOI: 10.1109/TFUZZ.2015.2394396]
    (coauthor R. Bělohlávek)
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar
  8. Residuated Lattices of Block Relations: Size Reduction of Concept Lattices.
    Accepted in International Journal of General Systems (2015).
    [DOI: 10.1080/03081079.2016.1144601]
    (coauthor M. Krupka)
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar
  9. Teorie informace. (in Czech)
    Matematika-Fyzika-Informatika 24 (3)(2015), pp. 219–228, Prometheus.
    [ISSN (print): 1210-1761, ISSN (on-line): 1805-7705]
  10. L-concept Analysis with Positive and Negative Attributes.
    Accepted in Information Sciences (2016).
    [DOI: 10.1016/j.ins.2016.04.012]
    (coauthor J. Konečný)
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar
  11. Do We Need Minimal Solutions of Fuzzy Relational Equations in Advance?
    Accepted in IEEE Transactions on Fuzzy Systems (2016).
    [DOI: 10.1109/TFUZZ.2016.2598860]
    (coauthor P. Procházka)
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar

papers in conference proceedings

  1. Knowledge Spaces, Attribute Dependencies, and Graded Knowledge States.
    In: FUZZ-IEEE 2007, The IEEE International Conference on Fuzzy Systems, London, UK, July 23-26, 2007, pp. 871-876.
    (coauthor R. Bělohlávek)
    [IEEE Catalog Number: 07CH37904C, ISBN: 978-1-4244-1209-9, ISSN: 1544-5615]
    citations (without selfcitations): 0 WoS, 0 Scopus, 2 Google Scholar
  2. Compositions of fuzzy relations with hedges.
    In: FUZZ-IEEE 2008, The 17th IEEE International Conference on Fuzzy Systems, Hong Kong, June 1-6, 2008, pp. 1100-1105.
    (coauthors R. Bělohlávek, V. Vychodil)
    [IEEE, ISBN: 978-1-4244-1818-3, ISSN: 1098-7584, Catalog Number: CFP08FUZ-CDR]
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar
  3. Compositions of fuzzy relations with hedges II.
    In: NAFIPS 2008, The Fourth International IEEE Conference on Intelligent Systems, New York City, NY, USA, May 19-22, 2008, pp. 1-6.
    (coauthors R. Bělohlávek, V. Vychodil)
    [IEEE, ISBN: 978-1-4244-2351-4, Catalog Number: CFP08802-CDR]
    citations (without selfcitations): 0 WoS, 0 Scopus, 1 Google Scholar
  4. Isotone Galois connections and concept lattices with hedges.
    In: IEEE IS 2008, Proc. International IEEE Conference on Intelligent Systems 2008, Varna, Bulgaria, Sept. 6-8, 2008, pp. 15-24—15-28.
    (coauthors R. Bělohlávek, J. Konečný, V. Vychodil)
    [IEEE, ISBN: 978-1-4244-1739-1, Catalog Number: CFP08802-PRT]
    citations (without selfcitations): 0 WoS, 0 Scopus, 6 Google Scholar
  5. Optimal decompositions of matrices with grades into binary and graded matrices.
    In: CLA 2008, The Sixth International Conference on Concept Lattice and Their Applications, Olomouc, Czech Republic, Oct. 21-23, 2008, pp. 59-70.
    (coauthors R. Bělohlávek, J. Konečný)
    [ISBN 978-80-244-2111-7]
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar
  6. Knowledge Spaces with Graded Knowledge States.
    In: International Symposium on Knowledge Acquisition and Modeling, Wuhan, China, Dec. 21-22, 2008, pp. 3-8.
    (coauthor R. Bělohlávek)
    [ISBN 978-0-7695-3488-6]
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar
  7. Reducing sup-t-norm and inf-residuum to a single type of fuzzy relational equations.
    In: NAFIPS 2011, Fuzzy Information Processing Society, El Paso, TX, USA, March 18-20, 2011, pp. 1-5.
    (coauthor R. Bělohlávek)
    [E-ISBN: 978-1-61284-967-6, Print ISBN: 978-1-61284-968-3, DOI: 10.1109/NAFIPS.2011.5752008]
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar
  8. Comparison of classical dimensionality reduction methods with novel approach based on formal concept analysis.
    In: RSKT 2011, LNCS 6954. Springer-Verlag, Heidelberg, 2011, pp. 26–35.
    (coauthors H. Řezanková, L. Sobíšek)
    [ISBN: 978-3-642-24424-7]
    citations (without selfcitations): 2 WoS, 2 Scopus, 3 Google Scholar
  9. Logical analysis of concept lattices by factorization.
    In: F. Domenach, D. I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNCS 7278. Springer, Heidelberg, 2012, pp. 16–27.
    (coauthor M. Krupka)
    [ISBN: 978-3-642-29891-2, DOI: 10.1007/978-3-642-29892-9_8]
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar
  10. Minimal solutions of fuzzy relation equations with general operators on the unit interval.
    In: IPMU 2014, 15th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Montpellier, France, July 15-19, 2014.
    (coauthors J. Medina-Moreno, E. Turunen, J. C. Díaz)
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar
  11. Formal L-concepts with Rough Intents.
    In: CLA 2014, The Eleventh International Conference on Concept Lattice and Their Applications, Košice, Slovakia, Oct. 7-10, 2014.
    (coauthor J. Konečný)
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar
  12. Using Linguistic Hedges in L-rough Concept Analysis.
    In: CLA 2015, The Twelfth International Conference on Concept Lattice and Their Applications, Clermont-Ferrand, France, Oct. 13-16, 2015.
    (coauthor J. Konečný)
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar
  13. Dimensionality reduction in Boolean data: comparison of four BMF methods.
    Volume 7627 of the series Lecture Notes in Computer Science, 118-133
    (coauthors R. Bělohlávek, P. Osička, H. Řezanková)
    citations (without selfcitations): 0 WoS, 0 Scopus, 0 Google Scholar

theses

  1. Differential geometry of plane curves used in technical fields. (in Czech)
    Bachelor thesis, Masaryk University, Brno, 2000.
  2. Fuzzy knowledge spaces. (in Czech)
    Master thesis, Palacky University, Olomouc, 2006.
  3. Mathematical foundations of graded knowledge spaces.
    Doctoral thesis, Binghamton University -- SUNY, New York, 2009.
  4. Fuzzy relational equations.
    Doctoral thesis, Palacky University, Olomouc, 2013.
  5. Constrained solutions of fuzzy relational equations.
    RNDr. (rerum naturalium doctor) thesis, Palacky University, Olomouc, 2013.