RNDr. Eduard Bartl, Ph.D. publikace

journal papers

  1. Optimal decompositions of matrices with grades into binary and graded matrices.
    Annals of Mathematics and Artificial Intelligence 59 (2)(2010), pp. 151–167, Springer.
    [ISSN Print: 1573-7470, ISSN Online: 1012-2443, DOI: 10.1007/s10472-010-9185-y]
    (coauthors R. Bělohlávek, J. Konečný)
    citations (WoS): 7
  2. Knowledge Spaces with Graded Knowledge States.
    Information Sciences 181 (8)(2011), pp. 1426–1439, Elsevier Sciences.
    [ISSN: 0020-0255, DOI: 10.1016/j.ins.2010.11.040]
    (coauthor R. Bělohlávek)
    citations (WoS): 21
  3. Sup-t-norm and inf-residuum are a single type of relational equations.
    International Journal of General Systems 40 (6)(2011), pp. 599–609, Taylor & Francis.
    [DOI:10.1080/03081079.2011.571438]
    (coauthor R. Bělohlávek)
    citations (WoS): 18
  4. Bivalent and Other Solutions of Fuzzy Relational Equations via Linguistic Hedges.
    Fuzzy Sets and Systems 187 (1)(2012), pp. 103–112, Elsevier.
    [ISSN: 0165-0114, DOI: 10.1016/j.fss.2011.05.020]
    (coauthors R. Bělohlávek, V. Vychodil)
    citations (WoS): 11
  5. Fuzzy relational equations in general framework.
    International Journal of General Systems 43 (1)(2014), pp. 1–18, Taylor & Francis.
    [DOI: 10.1080/03081079.2013.850197]
    (coauthor G. J. Klir)
    citations (WoS): 8
  6. Minimal solutions of generalized fuzzy relational equations: probabilistic algorithm based on greedy approach.
    Fuzzy Sets and Systems 260 (1)(2015), pp. 25–42, Elsevier.
    [ISSN: 0165-0114, DOI: 10.1016/j.fss.2014.02.012]
    citations (WoS): 25
  7. Hardness of Solving Relational Equations.
    IEEE Transactions on Fuzzy Systems 23 (6)(2015), pp. 2435–2438, IEEE.
    [ISSN: 1063-6706, DOI: 10.1109/TFUZZ.2015.2394396]
    (coauthor R. Bělohlávek)
    citations (WoS): 29
  8. Teorie informace. (in Czech)
    Matematika-Fyzika-Informatika 24 (3)(2015), pp. 219–228, Prometheus.
    [ISSN (print): 1210-1761, ISSN (on-line): 1805-7705]
  9. Residuated Lattices of Block Relations: Size Reduction of Concept Lattices.
    International Journal of General Systems 45 (7–8)(2016), pp. 773–789, Taylor & Francis.
    [DOI: 10.1080/03081079.2016.1144601]
    (coauthor M. Krupka)
    citations (WoS): 10
  10. L-concept Analysis with Positive and Negative Attributes.
    Information Sciences 360 (2016). pp. 96–111.
    [DOI: 10.1016/j.ins.2016.04.012]
    (coauthor J. Konečný)
    citations (WoS): 18
  11. Do We Need Minimal Solutions of Fuzzy Relational Equations in Advance?
    IEEE Transactions on Fuzzy Systems 25 (5)(2017), pp. 1356–1363, IEEE.
    [DOI: 10.1109/TFUZZ.2016.2598860]
    (coauthor P. Procházka)
    citations (WoS): 9
  12. Rough Fuzzy Concept Analysis.
    Fundamenta Informaticae 156 (2)(2017), pp. 141–168, IOS Press.
    [DOI: 10.3233/FI-2017-1601]
    (coauthor J. Konečný)
    citations (WoS): 2
  13. Moderní šifry I. (in Czech)
    Matematika-Fyzika-Informatika 27 (1)(2018), pp. 55–67, Prometheus.
    [ISSN (print): 1210-1761, ISSN (on-line): 1805-7705]
  14. Moderní šifry II. (in Czech)
    Matematika-Fyzika-Informatika 27 (5)(2018), pp. 373–388, Prometheus.
    [ISSN (print): 1210-1761, ISSN (on-line): 1805-7705]
  15. L-concept lattices with positive and negative attributes: Modeling uncertainty and reduction of size.
    Information Sciences 472 (2019), pp. 163–179, Elsevier.
    [DOI 10.1016/j.ins.2018.08.057]
    (coauthor J. Konečný)
    citations (WoS): 14
  16. Covering of minimal solutions to fuzzy relational equations.
    International Journal of General Systems 50 (2)(2021): pp. 117–138, Taylor & Francis.
    [DOI 10.1080/03081079.2020.1865340]
    (coauthor M. Trnečka)
    citations (WoS): 2
  17. Knuthovy vánoční stromky. (in Czech)
    Matematika-Fyzika-Informatika 30 (1)(2021), pp. 59–73, Prometheus.
    [ISSN (print): 1210-1761, ISSN (on-line): 1805-7705]
  18. Avoiding flatness in factoring ordinal data.
    Information Sciences 629 (2023), pp. 471–487, Elsevier.
    [DOI 10.1016/j.ins.2023.02.002]
    (coauthor R. Bělohlávek)
    citations (WoS): 1
  19. Cardinality of fuzzy sets and accumulation of small membership.
    Accepted in IEEE Transactions on Fuzzy Systems (2024).
    [DOI 10.1109/TFUZZ.2024.3383279]
    (coauthor R. Bělohlávek)
  20. On Ralescu’s cardinality of fuzzy sets.
    Submitted to Fuzzy Sets and Systems (2024).
    (coauthor R. Bělohlávek)

papers in conference proceedings

  1. Knowledge Spaces, Attribute Dependencies, and Graded Knowledge States.
    In: FUZZ-IEEE 2007, The IEEE International Conference on Fuzzy Systems, London, UK, July 23-26, 2007, pp. 871-876.
    (coauthor R. Bělohlávek)
    [IEEE Catalog Number: 07CH37904C, ISBN: 978-1-4244-1209-9, ISSN: 1544-5615]
    citations (WoS): 3
  2. Compositions of fuzzy relations with hedges.
    In: FUZZ-IEEE 2008, The 17th IEEE International Conference on Fuzzy Systems, Hong Kong, June 1-6, 2008, pp. 1100-1105.
    (coauthors R. Bělohlávek, V. Vychodil)
    [IEEE, ISBN: 978-1-4244-1818-3, ISSN: 1098-7584, Catalog Number: CFP08FUZ-CDR]
  3. Compositions of fuzzy relations with hedges II.
    In: NAFIPS 2008, The Fourth International IEEE Conference on Intelligent Systems, New York City, NY, USA, May 19-22, 2008, pp. 1-6.
    (coauthors R. Bělohlávek, V. Vychodil)
    [IEEE, ISBN: 978-1-4244-2351-4, Catalog Number: CFP08802-CDR]
  4. Isotone Galois connections and concept lattices with hedges.
    In: IEEE IS 2008, Proc. International IEEE Conference on Intelligent Systems 2008, Varna, Bulgaria, Sept. 6-8, 2008, pp. 15-24—15-28.
    (coauthors R. Bělohlávek, J. Konečný, V. Vychodil)
    [IEEE, ISBN: 978-1-4244-1739-1, Catalog Number: CFP08802-PRT]
  5. Optimal decompositions of matrices with grades into binary and graded matrices.
    In: CLA 2008, The Sixth International Conference on Concept Lattice and Their Applications, Olomouc, Czech Republic, Oct. 21-23, 2008, pp. 59-70.
    (coauthors R. Bělohlávek, J. Konečný)
    [ISBN 978-80-244-2111-7]
  6. Knowledge Spaces with Graded Knowledge States.
    In: International Symposium on Knowledge Acquisition and Modeling, Wuhan, China, Dec. 21-22, 2008, pp. 3-8.
    (coauthor R. Bělohlávek)
    [ISBN 978-0-7695-3488-6]
  7. Reducing sup-t-norm and inf-residuum to a single type of fuzzy relational equations.
    In: NAFIPS 2011, Fuzzy Information Processing Society, El Paso, TX, USA, March 18-20, 2011, pp. 1-5.
    (coauthor R. Bělohlávek)
    [E-ISBN: 978-1-61284-967-6, Print ISBN: 978-1-61284-968-3, DOI: 10.1109/NAFIPS.2011.5752008]
  8. Comparison of classical dimensionality reduction methods with novel approach based on formal concept analysis.
    In: RSKT 2011, LNCS 6954. Springer-Verlag, Heidelberg, 2011, pp. 26–35.
    (coauthors H. Řezanková, L. Sobíšek)
    [ISBN: 978-3-642-24424-7]
    citations (WoS): 9
  9. Logical analysis of concept lattices by factorization.
    In: F. Domenach, D. I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNCS 7278. Springer, Heidelberg, 2012, pp. 16–27.
    (coauthor M. Krupka)
    [ISBN: 978-3-642-29891-2, DOI: 10.1007/978-3-642-29892-9_8]
  10. Minimal solutions of fuzzy relation equations with general operators on the unit interval.
    In: IPMU 2014, 15th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Montpellier, France, July 15-19, 2014.
    (coauthors J. Medina-Moreno, E. Turunen, J. C. Díaz)
    citations (WoS): 2
  11. Formal L-concepts with Rough Intents.
    In: CLA 2014, The Eleventh International Conference on Concept Lattice and Their Applications, Košice, Slovakia, Oct. 7-10, 2014.
    (coauthor J. Konečný)
  12. Using Linguistic Hedges in L-rough Concept Analysis.
    In: CLA 2015, The Twelfth International Conference on Concept Lattice and Their Applications, Clermont-Ferrand, France, Oct. 13-16, 2015.
    (coauthor J. Konečný)
  13. Dimensionality reduction in Boolean data: comparison of four BMF methods.
    Volume 7627 of the series Lecture Notes in Computer Science, 118-133
    (coauthors R. Bělohlávek, P. Osička, H. Řezanková)
    citations (WoS): 1

theses

  1. Differential geometry of plane curves used in technical fields. (in Czech)
    Bachelor thesis, Masaryk University, Brno, 2000.
  2. Fuzzy knowledge spaces. (in Czech)
    Master thesis, Palacky University, Olomouc, 2006.
  3. Mathematical foundations of graded knowledge spaces.
    Doctoral thesis, Binghamton University -- SUNY, New York, 2009.
  4. Fuzzy relational equations.
    Doctoral thesis, Palacky University, Olomouc, 2013.
  5. Constrained solutions of fuzzy relational equations.
    RNDr. (rerum naturalium doctor) thesis, Palacky University, Olomouc, 2013.